

IMPACT OF MASK STACK ON HIGH NA EUV IMAGING

VICKY PHILIPSEN, ERIC HENDRICKX, RIK JONCKHEERE, GEERT VANDENBERGHE (IMEC)

NATALIA DAVYDOVA, TIMON FLIERVOET (ASML)

JENSTIMO NEUMANN (ZEISS)

INTRODUCTION

Increasing NA beyond 0.33 at reduction ratio 4X

Angular range at mask side increases

Impact on

- Reflectivity (multilayer and absorber)
- Diffraction (intensity and phase)
- Imaging (contrast and pattern shift through focus)

Can mask stack tuning help?

INTRODUCTION

Increasing NA beyond 0.33 at reduction ratio 4X

- Rigorous lithography simulations assess impact of high NA on EUV imaging
- Good description of 3D mask stack in simulator required
- Benchmark to current mask stack through experimental validation

- ML definition
 - Reflectometry on current EUV mask
- Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask
- Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging
- Summary & Conclusion

EXPERIMENTAL ML REFLECTIVITY THROUGH WAVELENGTH AND INCIDENCE ANGLE

- ► ML reflectivity measured in clear areas of 5x5mm² on 51nm Ta-based mask
- at LBNL reflectometer beamline for EUV

- Uniform over NA0.33
- Experimental peak ML Reflectivity below 0.65
- Current ML blank has good reflection control for NA up to 0.33

ML DEFINITION IN SIMULATOR FITTED TO EXPERIMENT AS ML WITH INTERMIXING

- ► In simulator we assumed until now ML consisting of 40 repetitions of Si/Mo layer with perfect interface
- ► From literature* we know intermixing at the interfaces will occur
- Experimental reflectometry as input for fitting mask ML in simulator

- Definition in simulator = ML with intermixing
 - fitted to mimic experimental measurement on ML blank

- ML definition
 - Reflectometry on current EUV mask
- Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask
- Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging
- Summary & Conclusion

MASK ABSORBER REFLECTIVITY THROUGH WAVELENGTH AND INCIDENCE ANGLE

- ► Absorber reflectivity measured on 51nm Ta-based mask
- at LBNL reflectometer beamline for EUV

- Absorber definition in simulator using CXRO n&k is good starting point
- Absorber definition in simulator can be fitted to experimental reflectivity by thickness and n&k fitting

- ML definition
 - Reflectometry on current EUV mask
- Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask
- Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging
- Summary & Conclusion

DIFFRACTOMETRY MASK

- Mask has 51nm Ta-based absorber
- Diffractometry L/S gratings

- Mask CD measurements from top-down CD SEM well documented
- Resolution down to 10nm hp (1X) over full field!

DIFFRACTOMETRY SPECTRA OF 1:1 HORIZONTAL LS

"I:I" LS - Horizontal orientation only

Beam incident perpendicular on grating

- 0th order decreases with increasing pitch
- - Ist order drops with decreasing pitch \Rightarrow absorber shadowing effect

ZBISS

DIFFRACTION SIMULATION IMPACT OF SPACE WIDTH FOR 54NM PITCH

- Zeroth order increases with decreasing mask line width
- Horizontal orientation suffers from shadowing

ZELISS

DIFFRACTION SIMULATION IMPACT OF SPACE WIDTH FOR 20NM PITCH

Severe shadowing (i.e., 3D mask effect) for small pitches:

- Vertical orientation : both first orders are impacted
- Horizontal orientation : minus first order gets blocked

ZEISS

DIFFRACTOMETRY OF 1:1 HOR. LS CORRELATION EXPERIMENT & SIMULATION

Simulated diffraction (using fitted mask stack definition) needs only one fixed CD-offset for all mask line widths to get **good correlation** with experimental diffraction

- Fitted mask stack definition in simulator allows interpretation of experimental diffractometry
- Patterned absorber at small spaces is responsible for imbalanced diffraction pupil
 - → causing asymmetric shadowing and pattern shift through focus

- ML definition
 - Reflectometry on current EUV mask
- Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask
- Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging
- Summary & Conclusion

IMAGING SIMULATION AT NA0.45 4X CURRENT ML INDUCES IMBALANCE

- ► Increasing NA and CRA increases angular range on mask
- ML reflectivity:

- Current ML: sharp reflectivity drop beyond 12° incidence angle is captured by NA0.45 \Rightarrow causing diffraction imbalance
- Compensate reflectivity by adjusting periodicity by ML factor

0.6

0.5

MLTUNING FOR UNIFORM REFLECTIVITY WITHIN NA0.45

EUV ML reflectivity within NA0.45 at CRA 8deg 4X

0.7 0.6 0.5 0.4 0.3 0.2 0.1

Bi-stack can give uniform reflectivity through large angles

ML IMPACT ON IMAGING AT NA0.45 PATTERN SHIFT THROUGH FOCUS

L/S imaging through pitch : Dipole90° σ0.74/I at NA0.45 CRA 8° 4X reduction

• Pattern shift through focus can be reduced by tuning ML, but significant pattern shift remains in small-pitch region.

ML IMPACT ON IMAGING AT NA0.45 PUPIL FILLING

L/S imaging through pitch : Dipole 90° σ 0.74/I at NA0.45 CRA 8° 4X reduction

Pupil filling for 11nm L/S at NA0.45:

- Imbalance in diffraction pupil remains after ML tuning
 - → Absorber impact at high angles, as shown by diffractometry

ABSORBER & ML IMPACT PATTERN SHIFT THROUGH FOCUS

L/S imaging through pitch : Dipole 90° $\sigma 0.74/I$ at NA0.45 CRA 8° 4X reduction

- Pattern shift through focus can be further reduced by tuned ML and thinner absorber, but not to acceptable level.
 - → large angles at mask remain issue in small-pitch region

ABSORBER & ML IMPACT UNDERSTANDING AT SMALL PITCH

Geometrical visualisation at small pitch

Pupil filling for I Inm L/S at NA0.45 CRA8° 4X reduction:

 Combined ML and absorber tuning helps reducing EUV-specific issues such as pattern shift through focus,

but strong mask effects remain in small-pitch region due to large angles.

- ML definition
 - Reflectometry on current EUV mask
- Absorber definition
 - Reflectometry on current EUV mask
 - Mask design & measurements
 - Diffractometry on current EUV mask
- Imaging at NA0.45 4X reduction
 - ML tuning
 - ML impact on imaging
 - Absorber impact on imaging
- Summary & Conclusion

SUMMARY & CONCLUSION

Experimental assessment of current mask stack

- Fitting of mask stack (ML + absorber) in simulator to actual mask performance
 - based on reflectometry and diffractometry measurements
- Experimental validation of patterned absorber impact on diffraction and predicted by simulation

Imaging simulation at NA0.45 CRA8° 4X reduction

No solution found yet that balances imaging performance due to complex interplay of large angles and mask stack (ML and absorber)

Outlook for high NA EUV

- Reduce mask effects (smaller range of incidence angles on mask) by
 - $CRA \le 7^{\circ}$ cf. previous talk of JT Neumann (Zeiss)
 - higher Reduction ratio
- Explore other tuning options
 - illumination tuning

